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A B S T R A C T

Motor Imagery Brain Computer Interface (MI-BCI) provides a non-muscular channel for communication to those
who are suffering from neuronal disorders. The designing of an accurate and reliable MI-BCI system requires the
extraction of informative and discriminative features. Common Spatial Pattern (CSP) has been potent and is
widely used in BCI for extracting features in motor imagery tasks. The classifiers translate these features into
device commands. Many classification algorithms have been devised, among those Support Vector Machine
(SVM) and

Linear Discriminate Analysis (LDA) have been widely used. In recent studies, the researchers are using deep
neural networks for the classification of motor imagery tasks. This paper provides a comprehensive review of
dominant feature extraction methods and classification algorithms in brain-computer interface for motor imagery
tasks. Authors discuss existing challenges in the domain of motor imagery brain-computer interface and suggest
possible research directions.
1. Introduction

A Brain Computer Interface (BCI) utilizes signals to establish a
connection between a person’s state of mind and a computer-based signal
processing system, which interprets the signals [1]. BCI provides a direct
communicational channel between the brain and an external device
without involving any muscular activities. These systems either use
electroencephalogram (EEG) activity recorded from the scalp or the ac-
tivity of individual cortical neurons recorded from implanted electrodes
[2].

EEG has relatively short time constants, and requires simple and
inexpensive equipment; therefore at present EEG-based BCI systems are
widely used [2–6]. Various forms of electrical brain activities have been
used to discern EEG based BCI systems, such as mu rhythm [7,8], slow
cortical potential [9], event-related p300 [10] and steady-state visual
evoked potential [11,12]. Among various types of electrical brain ac-
tivities, the one related to motor tasks is mu rhythm [13].

Motor imagery (MI) is defined as the cognitive process of imagining
the movement of your own body part without actually moving that body
part [14]. Motor imagery based Brain Computer Interface (MI BCI)
provides an interface for the patients with motor impairment or those
who are in completely locked-in-state to interact with the environment
arwal), nupur.chugh@gmail.com
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by controlling robotic prostheses, wheelchairs, and other devices [15].
MI BCI has a wide range of applications, such as controlling a

wheelchair, virtual reality, neurorehabilitation and controlling devices
such as quadcopters in 2-D/3-D space [16–19].

The EEG signal processing for MI BCI involves feature extraction and
classification. In feature extraction phase the EEG signal acquired for MI
BCI reveals task-specific features in both spectral domain and spatial
domain [20]. Several spectral processing methods such as wavelet
transform [21–23], fourier transform [24], autoregressive model [25]
and spatial method such as common spatial pattern (CSP) [26–29] have
been used in literature to extract the features from these EEG signals. CSP
algorithm is the most successful and is widely used in MI BCI due to its
high recognition rate and computational simplicity [30].

The goal of classification is to translate the signal features provided by
the feature extractor into commands or orders that carry out user’s intent
[2]. In MI BCI, classifiers convert discriminative features into different MI
tasks such as left-right hand movement, foot movement, tongue move-
ment or word generation. Copious classification algorithms, such as
support vector machines [31,32], linear discriminate analysis (LDA)
[26–28] neural networks [22,33,34], and deep neural networks [23,24,
35–38] have been applied on MI BCI.
(N. Chugh).
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2. Related work

The relevant reviews available on signal processing techniques mostly
focus either on feature extraction methods or on classification tech-
niques. Table 1 shows all reviews that are related to feature extraction
and classification techniques. The label Yes in table implies that article
presented that particular technique and label No implies vice versa.

Swati Vaid et al. [39] describe the model of BCI system. The author
categorized the techniques into basic techniques and advanced tech-
niques. The basic techniques are time domain and frequency domain
techniques. Advanced techniques are classified into time frequency
domain and space-time frequency domain. Further, they have summa-
rized the features and its techniques in respective domains.

M. Rajya Lakshmi et al. [40] briefly describe the feature extraction
techniques, which are Principal Component Analysis (PCA), Independent
Component Analysis (ICA), Auto Regressive Model (AR), Wavelet
Transform (WT) and Wavelet Packet Decomposition (WPD). Further-
more, the paper has explored the signal processing methods used in each
stage of brain computer interface.

Amjed S. Al-Fahoum and Ausilah A. Al-Fraihat [25] discuss the
feature extraction techniques in frequency domain and time frequency
domain such as fast fourier transform, auto regressive model, wavelet
transform, eigen vectors and time frequency distribution. The authors
have provided recommendations based on the performance.

Lotte et al. [41] discussed the classification algorithms used for EEG
based brain computer interfaces. The authors described the properties of
algorithms in detail and compared the performances of the classifiers.
Based on the performances the authors provide the guidelines for
selecting the best-suited classifier.

Rupal Chaudhary et al. [42] described the different stages of BCI. The
authors provided a review of classification of motor imagery tasks. It has
provided a summary of the paper selected and studied by the author.

All the works discussed in Table 1 provide brief description about any
one of the two important components of signal processing, that is feature
extraction or classification. Though M. Rajya et al. has discussed both
feature extraction and classification but discussion is not comprehensive.
Certainly, the description and discussion of various signal-processing
components needs further elaboration. It is understood that it would be
more helpful if all the elements of signal processing were presented in a
comprehensive and holistic manner. Based on this perspective the au-
thors have summarized the algorithms available for feature extraction
and classification for brain computer interfaces.

Authors in this paper have presented the variants available for feature
extraction methods and all the components are classified appropriately.
Recently Deep Learning has been introduced as the classification
methods for brain computer interfaces [23,24,35–38], which has not
been discussed in previous related works listed in Table 1. As benefits of
Table 1
Signal Processing techniques presented in related work.

Category Techniques Article

Rupal Chaudhari et al.
(2017) [42]

Swati Vaid et
(2015) [39]

Feature
Extraction

Fast Fourier Transform Yes
Short Term Fourier
Transform

Yes

Auto Regressive Model Yes
Wavelet Transform Yes
Wavlet Packet
Decomposition

Yes

Common Spatial Pattern Yes
Classification Linear Discriminant

Analysis
Yes

Support Vector Machine No
Artificial Neural
Network

Yes No

Deep Learning No
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deep learning in BCI has been highlighted by different researchers
[35–38], authors in this paper have included a discussion on deep
learning classification methods for BCI. Furthermore, the review also
critically examines the various challenges of different modules of BCI.

3. Working principle of BCI system

The working of the BCI system requires three modules that are signal
acquisition module, signal processing, and application module. This
section describes the working of each module. Fig. 1 shows the compo-
nents of BCI and their interactions.

3.1. Signal acquisition module

The Signal Acquisition Module is liable for recording the electro-
physiological signals that provide input to the BCI. These signals are
recorded from the scalp or from the surface of the brain or neuronal
activity [43]. BCI might use either invasive methods or non-invasive
methods for signal acquisition. Invasive methods are electrocardio-
grams (ECoG) and single-neuron recordings [43,44] and have better
signal quality as compared to non-invasive methods. Non-invasive
methods are Electroencephalogram (EEG), Magnetoencephalogram
(MEG), Positron Emission Tomography (PET), Functional Magnetic
Resonance Imaging (fMRI) and Near-Infrared Spectroscopy (NIRs) [44].

The acquired signals are amplified to enhance the strength and are
digitized before they are used by any of the computer application.

3.2. Signal processing module

3.2.1. Preprocessing
The task of preprocessing is to prepare the recorded signals for pro-

cessing by enhancing the signal –to- noise ratio (SNR). The part of EEG
signal that comes from muscular activity of head, and eye movement
generate electrical activity that is unrelated to the brain. Such part of
signal is considered as artifact and should not be processed in order to
preserve and exhibit the relevant information; therefore preprocessing is
done to remove artifacts in EEG signals. In BCI research, the proper
preprocessing of EEG signal is important in order to obtain high classi-
fication accuracy. Preprocessing of BCI is based on the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) which obtains the spatial and
frequency selection filters automatically [45].

3.2.2. Feature extraction
After preprocessing the signal is fed into one or more type of feature

extraction algorithms. This component extracts features in the time
domain and frequency domain that encode messages or commands [43].
Wide varieties of feature extraction methods are used in BCI system;
al. M. Rajya Lakshmi et al.
(2014) [40]

Amjed S. Al-Fahoum1
(2014) [25]

F Lotte et al.
(2007) [41]

Yes Yes
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No No
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Fig. 1. Components of a BCI system [21].
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some of these methods include amplitude measures, band power, Hjorth
parameters, autoregressive models, and wavelets and spatial filters [9].

3.2.3. Classification
The task of the classification component is to translate the features

provided by the feature extractor to a category of brain patterns; that is
the independent variable is converted into the dependent variable. The
classification algorithmsmay use linear methods like Linear Discriminant
Analysis (LDA) and Support Vector Machine (SVM) or non-linear
methods such as neural networks.

3.3. Application module

For most current BCIs, the output device is a computer screen and the
output is the selection of targets, letters, or icons presented on it [19].
Some BCIs provide an output, such as cursor movement toward the item
prior to its selection.

The output generated by the output device is the feedback provided to
the user to notify the user about the recognized brain activity pattern.
This pattern is then used to sustain and enhance the accuracy and speed
Fig. 2. Processes involved
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of communication.
There are various key components in the BCI closed loop, one is

feature extraction and the other is classification. There is a large diversity
of feature extraction and classification methods that have been explored
in BCI for motor imagery tasks. This paper gives an extensive review of
these two components that are described in the following sections.

4. Feature extraction techniques

During Feature extraction, features are extracted from the signals in
either time domain or frequency domain. As shown in Fig. 2 the feature
extraction process involves frequency filtering, windowing in which
short segments are selected, feature extractor and the feature selection
which outputs the selected features that are being fed into the classifier.
In BCI, frequency band power features and time domain features repre-
sent EEG signals. Band power features represent the power of EEG signals
for a given frequency band averaged over a time window and time
domain features are the combination of EEG signals from all channels. MI
BCI extensively uses band power features. Based on the literature found
and studied as shown in Table 4 it has been noticed that most of the used
in Feature Extraction.



Fig. 3. Short term Fourier Transform Process.
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or referenced techniques for feature extraction in motor imagery brain
computer interfaces are Short Term Fourier Transform (STFT), Auto
Regressive Model (AR), Wavelet Transform (WT), and Common Spatial
Pattern (CSP). This section gives detailed description of the varied
feature extraction methods used for motor imagery tasks.

4.1. Fast fourier transform (FFT)

The first feature extraction method used for MI BCI was based on Fast
Fourier Transform [25] that is applied to estimate the power at chosen
frequency bands in FFT generated spectra. Fourier analysis decomposes
the signal into its frequency components and determines their relative
strengths. FFT does not consider time information, thus it is not able to
analyze non-stationary EEG signals. In order to represent the
non-stationary signal the author uses Short Term Fourier Transform
(STFT) [25,46]. In STFT, the signal is divided into small overlapping
frames on which FFT is applied by placing a window function on time
axis as shown in Fig. 3.

When fixed time window function is applied to STFT, it produces
fixed time-frequency resolution that limits the use of STFT. This means
that one can only trade time resolution for frequency resolution or vice
versa.

4.2. Autoregressive (AR) model

The Autoregressive model is the parametric approach that estimates
the Power Spectrum Density (PSD) of the signal. Typically, short epochs
are preferred over longer epochs for analysis in order to characterize the
rapid changes that occur in EEG signal. The spectra obtained from FFT on
short epochs have poor resolution when compared to an autoregressive
model. Although the resolution of FFT could be improved by applying
window function such as Hanning window, but still it have poor reso-
lution as compared to autoregressive model as shown in Fig. 4. The
validity of spectral estimate depends on the selection of proper model
order where model order roughly determines the number of spectral
peaks that need to be captured. If the model order is too low, AR yields
smooth spectrum whereas, if it is too high the spectrum has spurious
peaks [19]. The model order for EEG ranges from 3 to 20 [47].

4.3. Wavelet transform (WT)

Wavelet Transform is the feature extraction technique that extracts
features in time-domain and is used to represent the function by an
infinite number of wavelets where each wavelet has specific time-
frequency characteristics. The above two techniques, FFT and AR
model uncover only spectral characteristics of signals and do not obtain
good performance with non-stationary EEG signal. Wavelet Transform
combines frequency information and time domain information, which
gives better performance as compared to FFT or AR [25]. WT uses
varying size window such that high frequencies are evaluated on the
shorter window and low frequencies over longer window [48,49] thus
WT performs better in time resolution of high frequencies as compared to
STFT as shown in Fig. 5. The other extensions of WT have also been used
in MI BCI such as Wavelet Packet Transform (WPT) [50] and Wavelet
Packet Best Basis Decomposition (WPBBD) [51].

4.4. Common spatial pattern (CSP)

In MI BCI, spatial information is required in multichannel EEG re-
cordings to discriminate intent patterns and therefore, the spatial filters
have been used to extract spatial information from the signal. Common
Spatial Pattern generates spatial filters that minimize the variance of one
class and maximize the variance of other class simultaneously. The
multichannel EEG signal is passed into bandpass filter for selecting the
frequency. After frequency filtering, spatial filtering is performed that
uses spatial filters and FIR filters. The process of common spatial pattern
4



Fig. 4. Comparison of Spectra generated by FFT and AR model [47].

Fig. 5. Comparison of resolution obtained by STFT and WT.
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is shown in Fig. 6. CSP is one of the most effective feature extraction
methods used in binary motor imagery task classification.

In brain computer interface the objective of spatial filtering used by
the CSP algorithm is to compute features whose variances are optimal for
discriminating two classes of EEG measurements [52]. The performance
of this spatial filtering depends on the operational frequency band of
EEG. Several approaches have been proposed to fine-tune the
5

subject-specific frequency range for CSP algorithm. One such approach is
the Common Spatio-Spectral Pattern (CSSP) [53], which optimizes sim-
ple filters with a spatial filter. Another approach was the Common Sparse
Spectral-Spatial Pattern (CSSSP) [54]. It improves the CSSP algorithm by
performing simultaneous optimization of an arbitrary FIR filter within
the CSP algorithm.

An alternative approach called Sub Band Common Spatial Pattern



Fig. 6. Process of common spatial pattern.

Fig. 7. Classification process.
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(SBCSP) [55] was proposed in which EEG signals are decomposed into
sub-bands. CSP is applied to each sub-band that defines sub-band score
and then these scores are fused together to derive the final decision.
SBCSP has improved classification accuracy when compared to CSSP and
CSSSP.

As compared to SBCSP, a more generalized approach called Filter
Bank Common Spatial Pattern (FBCSP) [56] was proposed that
comprised of four stages: frequency filtering, spatial filtering, feature
selection, and classification. It deploys a small subset of effective spatial
filters that reduces computational complexity against SBCSP. A variant,
named Discriminative FBCSP (DFBCSP) [57] was proposed to enhance
classification accuracy. DFBCSP extracts subject specific discriminative
frequency bands from the set of filters instead of using fixed frequency
bands for all subjects as in FBCSP.

In 2016, Separable Common Spatio Spectral Patterns (SCSSP) [20]
had been proposed that jointly processed the data in both spectral and
spatial domains and had low computational cost over FBCSP. This
approach was suitable for wearable mobile BCI systems. FBCSP used the
fixed partition of a frequency band that leads to loss of information in the
frequency domain. The augmented CSP [58] based on varying partition
of the frequency band with different bandwidths had solved the problem
of information loss.

Some other variants of CSP found in literature are sparse CSP [59]
that impose sparsity on weights by adding regularization factor on spatial
filter, stationary CSP [60] that uses stationary subspaces, divergence CSP
[61] that utilizes information from other subjects and enforce different
invariance formulating divergence maximization problem, and probabi-
listic CSP [62] that solves the problem of overfitting.

While all these variants improve the standard CSP algorithm, they are
still unable to characterize temporal (time-related) dynamics; thus, more
sophisticated techniques that consider time-related information are
required. The features extracted from CSP are then fed into various
classifiers for classification.

The different prominent feature extraction techniques used for MI BCI
along with advantages and limitations are summarized in Table 2.

5. Classification techniques

The classification is a process of predicting the target variables or
classes from the given input. To build the classification model, learning
algorithm is applied in the training phase to adjust the parameters of the
Table 2
Comparison of Feature Extraction Techniques used for MI BCI.

Technique Advantages

Fast Fourier
Transform(FFT)

� FFT is accurate at frequency composition of a signal.
� It has enhanced speed over all other methods.

Autoregressive Model (AR) � It provides good frequency resolution.
� It has reasonable spectral estimates for short segments.

Wavelet Transform(WT) � WT provides improved balance between window length and
spectral resolution.

� It is better suited for sudden changes in signal.
Common Spatial Pattern
(CSP)

� CSP is suitable for multichannel signal analysis.
� It is used to tune subject specific frequency range.

6

model as shown in Fig. 7. The same model is then used in the testing
phase to extract the output. In motor imagery brain computer interface
the features extracted by various feature extraction techniques are con-
verted into different motor imagery tasks like hand movements, foot
movement, word generation and alike through classification algorithms.

The authors have classified the classification algorithms used in the
literature as linear classifiers, neural networks, non-linear classifiers, and
deep neural networks. Linear Classifiers use the linear function to
distinguish classes. Two main types of linear classifiers are Linear
Discriminant Analysis (LDA) [26–38] and Support VectorMachine (SVM)
[29,31,63] and have been commonly used in testing of BCI. Neural
Network (NN) is an assembly of different artificial neurons, which en-
ables to produce nonlinear decision boundaries. The NN specifically
created and used for BCI is Gaussian Classifier [41]. Non-linear classifiers
produce non-linear decision boundaries and are generative. These clas-
sifiers are not widespread and not popular as the linear classifier and
neural networks in MI BCI. Deep Neural network (DNN) is an artificial
network with multiple layers called as hidden layers between input and
output layers and is used to model complex non-linear relationships. The
classifiers based on deep neural networks have been used in MI BCI
research to improve the accuracy of multiclass signal analysis.

This section gives a detailed description of the linear classifier,
Limitations Analysis
Method

� FFT is not suitable for analyzing non- linear signals.
� It does not take into time information into account.

Frequency

Validity of the model depends upon the proper selection of
model order.

Frequency

Proper selection of appropriate mother wavelet is required. Time-
Frequency

� CSP does not able to handle temporal dynamics.
� It has slow convergence.

Spatial Filters
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classifier based on neural network and the deep neural network that is
used in the field of MI BCI.

5.1. Linear discriminative analysis (LDA)

LDA classifier has the low computational requirement that makes it a
commonly used classifier in EEG based BCI applications. LDA projects
data into new space using projection y ¼ wTx that minimizes the scatter
within the class and maximizes between the classes as illustrated in
Fig. 8.

LDA has been successfully used for classification of right and left-hand
motor imagery [41]. The main drawback of LDA is that it provides the
poor result on complex nonlinear EEG data [65]. Regularized Fisher LDA
[27], an enhancement of LDA has also been used for right and left-hand
motor imagery that uses decision boundary or hyperplane in feature
space for classifying features in distinct classes. Fisher LDA obtains better
generalization capabilities and gives better results than LDA [65].

5.2. Support vector machine (SVM)

Support Vector Machine has been very popular in BCI research. SVM
selects the hyperplane that maximizes the distance from the nearest
training points. Linear SVM uses the linear function as decision bound-
aries while nonlinear SVM uses the kernel function to map the data into
higher dimensional space [29]. Linear SVM and non-linear SVM is shown
in Fig. 9.

Md Rabiul Islam et al. (2017) [63] uses SVM on features with reduced
dimension obtained by employing multiband TSM and PCA respectively
for four class classification problems. Some other flavors of SVM like
Transition Detection based SVM (TD-SVM) [31] and Evolved filters based
SVM [32] have been used for MI BCI. In TD-SVM, the classification
problem is divided into two sub-problems: detecting class transitions and
determining the class for sequences of instances between transitions.
Evolved filters based SVM algorithm optimizes spatial and
frequency-selection filters by means of the Covariance Matrix Adaptation
Evolution Strategy. SVM is known to have good generalization properties
and is insensitive to the curse-of-dimensionality [64].

5.3. Neural network (NN)

SVM gives high-quality results but is not able to handle the multiclass
problem and dynamic nature of EEG signal effectively. Robust classifiers
give better performance but need more time; therefore, there is a tradeoff
between accuracy and speed. As the neural network provides reasonable
tradeoff, it has been extensively used in BCI research. There are several
NN architectures used in the field of BCI, the one that has been
Fig. 8. Linear Discriminant Analysis (LDA) projection [26].
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specifically created for BCI is the Gaussian classifier [65,66]. Each unit of
this NN is a Gaussian discriminant function representing a class proto-
type. This classifier has been applied with success to motor imagery [22]
and mental task classification [34]. Other NN architectures such as
Multilayer Perceptron (MLP), neural network based on Radial Basis
Function (RBF), spiking neural network [67] that uses Online Meta
neuron based Learning Algorithm (OMLA) has been applied for classifi-
cation of MI tasks. NN has also been successfully applied for multiclass
multiuser MI tasks [22] classification.

5.4. Deep learning

In the traditional neural network, weights have to be chosen very
carefully. This is a major obstacle in the effective use of the neural
network in many applications of BCI. In recent studies, researchers have
been using deep learning approach as deep neural network has high
descriptive power and thus improves the accuracy of the system. Deep
learning has successful performance in the field of computer vision and in
recent years has also been applied in classification of motor imagery tasks
[24,68]. Initially, Na Lu et al. [24] proposed an approach to use manually
extracted features from the channels based on FFT and then feed them
into a Deep Belief Network (DBN). Among various deep learning archi-
tectures Convolutional Neural Network (CNN) is effectively used for
classification of motor imagery tasks [23,35–38,69] due to its regulari-
zation structure and degree of translation invariance. The Convolutional
neural network is a class of deep feed-forward artificial neural network
that uses a variation of multilayer perceptrons. A simple CNN is a
sequence of layers, and every layer of a CNN transforms one volume of
activations to another through a differentiable function. CNN architec-
ture consists of the input layer, convolution layer, pooling layer, fully
connected layer and output layer as shown in Fig. 10. The Convolutional
layer is the core building block of CNN and does most of the computation.
Pooling layer reduces the spatial size of representation and neurons in
fully connected layer have full connections to the previous layer.

Siavash et al. [36] and Huijuan et al. [58] proposed CNN architecture
that uses dynamic energy based features for classifying multiclass motor
imagery EEG signals. In Ref. [36] the author proposed a parallel archi-
tecture that uses 3 layered MLP for static energy features and CNN for
dynamic energy features with dropout regularization. The predictions
from both the networks are joined via averaging. The framework yields a
significant increase in classification accuracy as compared to the support
vector machine. In Ref. [58] the author proposed an architecture that
uses augmented CSP for feature extraction. The energy features are ar-
ranged on a 2D matrix and CNN is then trained on this matrix to
discriminate the features. Further, the feature maps are selected by using
the map selection algorithm after the convolution.

In the past, CNN has been used for classification of left and right
motor imageries that use time-frequency representation as input [23,35].
The author [23] proposed an architecture that uses Continuous Wavelet
Transform with morlet and bump wavelets for feature learning. The 1D
convolution is conducted at convolution layer to analyze spectral char-
acteristics over time. The framework has achieved promising
performance.

More recently, CNN has been applied for the classification of multi-
class motor imagery tasks using temporal representations [38]. Another
framework [37] that is applied for multiclass motor imagery task consists
of temporal feature extractor, spatial feature extractor and a classifier
that is learned jointly in an end-to-end manner. The framework uses
recurrent convolution layers and has shown acceptable performance.

The classifiers in the field of MI BCI, along with their advantages and
limitations, have been described in Table 3.

6. Literature cited

According to various studies reviewed in this paper, it has been found
that most of the work is based on publicly available dataset and is limited



Fig. 9. Linear and non-linear support vector machine.

Fig. 10. Convolutional neural network.

Table 3
Comparison of classification algorithms used for MI BCI.

Technique Advantages Limitations

Linear
Discriminant
Analysis (LDA)

� LDA has low computational
requirement.

� It is Simple to use.

It is not suitable for
complex non-linear EEG
data.

Support Vector
Machine (SVM)

� SVM has better generalisation
properties.

� It is insensitive to curse to
dimensionality.

It is not suitable for
handling dynamic nature
of signal.

Neural Networks
(NN)

NN provides reasonable tradeoff
between accuracy and speed.

Weights have to be chosen
carefully.

Deep Neural
Networks
(DNN)

It is able to learn discriminat
features and classifier
simultaneously from raw EEG
data.

DNN has large
computational complexity
for training and testing.
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to upper limb imageries. Among the classification methods, SVM is
commonly used and has promising results. Although Shallow CNN has
shown the promising results in MI BCI research; still the deep neural
networks is lagging in performance due to unavailability of the large
training dataset. The earlier studies focus on two class motor imagery
that is now shifting towards multiclass and multilabel motor imageries in
recent studies.

Table 4 presents the summary of the literature studied related to the
motor imagery brain computer interface.

Table 5 shows the performance comparison of Common Spatial
Pattern and Wavelet Transform with different classification techniques
using publicly available dataset BCI Competition III. The table reveals
that the Wavelet Transform has accuracy of 86.20% with CNN classifier,
which is highest among all other classifiers, used with Wavelet Trans-
form. Moreover, Common Spatial Pattern is also effective with the clas-
sification techniques that are based on Deep Learning or Deep Neural
Network.

7. Challenges

Various feature extraction and classification algorithms have been
applied successfully for EEG based BCI for motor imagery tasks and ob-
tained good accuracy results, still, there are some unresolved issues and
challenges that attract attention from researchers from varied domains.
8

Pertaining to open issues and challenges are listed in Table 6.

7.1. Feature extraction

EEG signal is usually very noisy and time-variable; therefore, it is
challenging to extract relevant features from EEGmeasurements in a very
short time window. Although Common Spatial Pattern (CSP) and its
variants are popular and extensively used in BCI, it does not consider the
temporal structure of the signal that results in loss of temporal infor-
mation (time-related information) [77]. Thus, sophisticated time series
modeling techniques are required that consider temporal dynamics.

There has been some research [28,36,38] in recent years that has
considered temporal dynamics and improved the classification accuracy
to some extent. The author in Ref. [38] proposed a parallel MLP and CNN
architecture where MLP uses log energy based features and CNN uses a
temporal representation of selective EEG channels from FBCSP algo-
rithm. The combination of architecture used by the author resulted in a
small and consistent increase in all subjects. The author has suggested
research directions in preprocessing of data, optimization of hyper-
parameter in parameter selection and in proposing a modified architec-
ture that should be based on the combination of static and dynamic
energy features.

The author in Ref. [28] presents an algorithm for determining fea-
tures that used a combination of temporal, spectral and spatial infor-
mation. The proposed algorithm is a four-phase method based on the
static selection of subject-specific information to reduce classification
error. The authors suggested that automatic subject selection and
multivariate feature selection methods might be used further to enhance
the accuracy of the system.

Owing to the efficiency of CSP for binary classification, it has been
extensively used in brain computer interfaces to overcome the limitation
of the subject-specific frequency band. However, the performance of CSP
and its variants in multiclass classification remain an open challenge due
to the dramatic increase in the number of feature subsets in MI tasks.

7.2. Classification

The challenges related to classification have been discussed in three
articles where Na Lu et al. [24] suggested that the classification algo-
rithms available needed large computation and are unsuitable for online



Table 4
Summary of literature studied in MI BCI.

Paper Title Year Feature Extraction
technique

EEG Features Class Motor Imagery Classification Dataset Accuracy

Evolving Spatial and
Frequency Selection
Filters for Brain-
Computer Interfaces
[32]

2010 CSP Frequency based 3 Left hand, Right hand
and generation of
words

SVM BCI-III
competition

Evolved Filters-
Subject1- 77.96%,
Subject2-75.11%,
Subject-3 57.76%

EEG feature comparison
and classification of
simple and compound
limb motor imagery
[71]

2013 CSP Band Power 7 Compound(both
hands, left hand þ
right foot, right hand
þ left foot), rest state

SVM Author Prepared 70%

A Novel Classification
Method for Motor
Imagery Based on
Brain-Computer
Interface [26]

2014 CSP Spatial features 2 Left and Right Motor
Imagery

LDA Author prepared 91.25

Increase performance of
four-class classification
for Motor-Imagery
based Brain-Computer
Interface [29]

2014 CSP ERD/ERS 4 Left hand, right hand,
foot and tongue

LDA, QDA,
SVM

BCI competition
2008 (Graz data
set 2A)

LDA- 78.82%

Neural Network-based
Three-Class Motor
Imagery Classification
Using Time-Domain
Features for BCI
Applications [33]

2014 Root mean Square
and integrated
EEG

Time domain 3 Left hand, right hand
and tongue

Neural
network

Author Prepared MLP RMS-
82.50%,IEEG- 81.07%
RBF RMS- 84.94%,
IEEG- 81.52%

Parallel Convolutional-
Linear Neural Network
For Motor Imagery
Classification [36]

2015 FBCSP Energy based 4 Left hand, right hand,
feet and tongue

CNN BCI competition
IV dataset 2A

70.60%

On the Use of
Convolutional Neural
Networks and
Augmented CSP
Features for Multi-class
Motor Imagery of EEG
Signals Classification
[58]

2015 Augemented CSP Frequency based Multi
class

Left hand, right hand,
both feet and tongue

CNN BCI competition
IV dataset 2A

Complementary
feature map selection
scheme – 68.45%, Full
map scheme – 69.27%

A Multi-label
Classification Method
for Detection of
Combined Motor
Imageries [72]

2015 CSP Band Power 4 Rest, right hand, left
hand and both hands

LDA Author Prepared 51.67%

A Deep Learning Scheme
for Motor Imagery
Classification based on
Restricted Boltzmann
Machines [24]

2016 Fast Fourier
Transform and
wavelet packet
decomposition

Frequency
domain features

2 Left and Right motor
imagery

Deep Neural
Network

BCI competition
IV data set 2B

Not Provided

EEG Feature Extraction
and Classification in
Multiclass Multiuser
Motor Imagery Brain
Computer Interface
using Bayesian
Network and ANN [22]

2017 Wavelet
decomposition

Sensorimotor
rhythms

Multi
class

Rest state, left fist,
both fists, right fist,
both feet movement

Neural
network

Physionet dataset
record

93.05%

A Deep Learning
Approach for Motor
Imagery EEG Signal
Classification [68]

2017 Common Spatial
Pattern

Variance based
CSP features

2 Left and Right hand Deep Neural
Network

BCI competition
III dataset 4A

Not Provided

A Convolution Neural
Networks Scheme for
Classification of Motor
Imagery EEG based on
Wavelet Time-
Frequency Image [23]

2018 Continous
Wavelet
transform

Time -frequency
Representations

2 Left and Right hand CNN BCI competition
IV dataset 2B

Morlet- 78.93%,
Bump-77.25%

Deep Convolutional
Neural Network for
Decoding Motor
Imagery based Brain
Computer Interface
[35]

2017 STFT Time -frequency
Representations

2 Left and Right hand CNN Author Prepared CNN(RELU)- 86.74%,
CNN(ELU) – 88.92,
CNN(SELU)- 92.73%

Classification of Motor
Imagery for Ear-EEG

2018 CSP Log variance
features

2 Motor þ ear RLDA Dataset 1: Author
prepared, Dataset

Dataset 1: 77.71%,
Dataset 2: 74.28%

(continued on next page)
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Table 4 (continued )

Paper Title Year Feature Extraction
technique

EEG Features Class Motor Imagery Classification Dataset Accuracy

based Brain-Computer
Interface [73]

2: BCI
Competition III
dataset 4A

Learning Temporal
Information for Brain-
Computer Interface
Using Convolutional
Neural Networks [38]

2018 FBCSP Temporal 4 Left, right, feet and
tongue

CNN BCI competition
IV dataset 2A

74.46%

Deep Recurrent Spatio-
Temporal Neural
Network for Motor
Imagery based BCI [37]

2018 Recurrent CNN Spatial and
temporal
features

4 Left hand, right hand,
feet and tongue

Recurrent
CNN

BCI Competition
IV dataset 2A

45%

Table 5
Performance Comparison of Common Spatial Pattern and Wavelet Transform on different Classifiers.

Paper Title Feature
Extraction

Classification Dataset Accuracy

Evolving Spatial and Frequency Selection Filters for Brain-Computer
Interfaces [32]

CSP SVM BCI-III
competition

Evolved Filters- Subject1- 77.96%, Subject2-
75.11%, Subject-3 57.76%

Classification of Motor Imagery for Ear-EEG based Brain-Computer
Interface [70]

CSP RLDA BCI-III
competition

74.28%

A Deep Learning Approach for Motor Imagery EEG Signal
Classification [65]

CSP DNN BCI-III
competition

Percentage Error- 10%

A Motor Imagery BCI Experiment using Wavelet Analysis and Spatial
Patterns Feature Extraction [74]

WT LDA BCI III
Competition

MisClassification Rate: 0.1286

Enhancing EEG Signals in Brain Computer Interface Using Wavelet
Transform [75]

WT SVM BCI III
Competition

85.54%

Enhancing EEG Signals in Brain Computer Interface Using Wavelet
Transform [75]

WT NN BCI III
Competition

82.43%

Deep Fusion Feature Learning Network for MI-EEG Classification [76] WT CNN BCI III
Competition

86.20%

Table 6
Category wise reported challenges.

Category Challenges Papers

Feature Extraction Time series modeling techniques [TSM] [36,
70]

Automatic selection of subject specific
characteristics [ASSC]

[28]

Number of components to be chosen in feature
selection [NCC]

[29]

Classification Robust classifiers [RC] [33]
Classification methods considering user in the loop
[CM]

[21,
71]

Signal
Interpretability

Interpretability of learned algorithms [ILA] [36]

Hardware Algorithm device integration [ADI] [26]
Data collection Gathering data for individual subject [GD] [36]
BCI functioning Long caliberation time [LCI] [38]

Signal processing pipeline in multiclass
classification [SPP]

[29]

Modality High dimensionality of EEG signal [HD] [36]
Low signal to noise ratio[SNR]
Presence of noise [PON]
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processing. Thus, there is a need to test and validate classification algo-
rithms online as they are computationally efficient and can be used in
real time. Further, in order to provide a reasonable tradeoff between
accuracy and efficiency, robust classifiers have to be developed that can
be easily used online and are able to work with non-stationary data
efficiently. Furthermore, the authors in Refs. [19,74] suggested a new
generation of classification methods considering the user in the loop has
to be developed to ensure efficient brain computer interfaces.
10
7.3. Hardware and BCI functioning

Chih-Yu Chen et al. [26] proposed a novel classification method that
has used CSP for feature extraction and LDA for classification to solve the
misclassifying problem. The proposed method is efficient and has high
accuracy. The author also suggested having algorithm-device integration
to make the system more efficient and practicable.

In traditional methods of signal processing, feature extraction and
classification was performed separately which associates heavy compu-
tational burden. The concept of neural network combines the feature
extraction and classification in one pipeline and has been explored for
binary classification [24]. However, the use of neural network is suc-
cessful in binary classification but increases the calibration time in BCI
[38]. The author suggested adopting transfer learning and domain
adaptation to have calibration free BCIs. Moreover pipelining in multi-
class classification is still a challenge [29].

7.4. Data collection and modality

Deep architectures have been successful in computer vision and other
fields due to their high learning capacity and being trained on the huge
amount of data. In EEG-based BCI researches, gathering subject-specific
data and capturing non-stationary nature is a hindrance to classifica-
tion accuracy of MI tasks [36].

Other challenges could be signal modality [36] and lack of training
data [36] that hinders the development of efficient brain computer
interfaces.

The above-stated challenges can be explored in different domains,
which are machine learning, signal processing, and hardware specifica-
tions. Correlation between reported challenges in Table 4 and the pro-
spective research domains have been represented by Fig. 11.



Fig. 11. Challenges coverage across varied domains. The challenges are Time
Series Modeling Techniques (TSM), Automatic selection of Subject Specific
Characteristics (ASSC), Number of Components (NCC), Classification Methods
(CM), Interpretability of Learned Algorithms (ILA), Algorithm-Device Integra-
tion (ADI), Gathering Data (GD), Long Calibration Time (LCT), Signal Processing
Pipelining (SPP), High Dimensionality of EEG (HD), Signal to Noise Ratio (SNR),
Presence of Noise (PON).
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8. Conclusion

The paper presented the comprehensive comparison of prominent
feature extraction techniques used for EEG based BCI for motor imagery
tasks. Currently CSP is the most preferred method of feature extraction.
The presented review highlighted the various features like frequency
band, spatial filters, and presence of artifacts in the signal on which the
performance of CSP is highly dependent.

This paper also discussed the various classification methods currently
used for motor imagery BCI. Classification methods are detailed by
various categories: linear, non-linear, neural network and deep learning.
Support vector machine is the commonly used classifier as it is insensitive
to curse of dimensionality. In recent studies, several deep learning ar-
chitectures were also used as a classification method for motor imagery
tasks, among that shallow convolutional neural network is the prominent
architecture and has outperformed the traditional methods of
classification.

Authors have explored the various challenges of different modules of
BCI and these challenges were mapped with the domains of machine
learning, signal processing and hardware specifications.

Future work related to MI BCI should focus on developing informa-
tion extraction techniques that consider the automatic selection of sub-
ject relevant temporal information. Additionally, robust classifiers needs
to be evolved so as to work with noisy signals and high dimensionality
data. There is also a need to develop the new generation of classification
methods that should consider the user in the loop to provide feedback
from which the user can learn; and help to build an accurate and efficient
BCI system.
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